Counting Set Systems by Weight

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Set Systems by Weight

Applying enumeration of sparse set partitions, we show that the number of set systems H ⊂ exp({1, 2, . . . , n}) such that ∅ 6 ∈ H, ∑E∈H |E| = n and ⋃E∈H E = {1, 2, . . . ,m}, m ≤ n, equals (1/ log(2)+ o(1))bn where bn is the n-th Bell number. The same asymptotics holds if H may be a multiset. If the vertex degrees in H are restricted to be at most k, the asymptotics is (1/αk + o(1))bn where αk...

متن کامل

A pr 2 00 4 Counting set systems by weight

Applying the enumeration of sparse set partitions, we show that the number of set systems H ⊂ exp({1, 2, . . . , n}) such that ∅ 6∈ H, ∑E∈H |E| = n and ⋃ E∈H E = {1, 2, . . . ,m}, m ≤ n, equals (1/ log(2)+o(1))bn where bn is the n-th Bell number. The same asymptotics holds ifH may be a multiset. If vertex degrees in H are restricted to be at most k, the asymptotics is (1/αk + o(1)) bn where αk ...

متن کامل

Parallel frequent set counting

Computing the frequent subsets of large multi-attribute data is both computationand data-intensive. The standard parallel algorithms require multiple passes through the data. The cost of data access may easily outweigh any performance gained by parallelizing the computational part. We address three opportunities for performance improvement: using an approximate algorithm that requires only a si...

متن کامل

Set Theory: Counting the Uncountable

If f : X → Y is a bijection, then for every y ∈ Y there is a unique x ∈ X such that f(x) = y. That is, f matches up all the elements of X and Y in a 1–1 fashion. We can thus consider X and Y to have the same number of elements. If f : X → Y is an injection, then f matches up all of the elements of X with only some of the elements of Y , so we can consider X to be smaller than Y . This motivates...

متن کامل

Counting Minimum Weight Spanning Trees

We present an algorithm for counting the number of minimum weight spanning trees, based on the fact that the generating function for the number of spanning trees of a given graph, by weight, can be expressed as a simple determinant. For a graph with n vertices and m edges, our algorithm requires O(M(n)) elementary operations, whereM(n) is the number of elementary operations needed to multiply n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2005

ISSN: 1077-8926

DOI: 10.37236/1908